
ROSE HOOPER | PYOHIO 2023

GLACIAL REFACTORING
A Glacier-inspired Approach to Code Cleanup

1

WHY GLACIERS?

2

WHY GLACIERS?
GLACIAL REFACTORING IS A GRADUAL PROCESS.

We can draw parallels between code features and glacial features.

Several distinct stages

3

GLACIAL REFACTORING STAGES
• Codescape Accumulation
• Refactoring Phase
• Evolutionary Codescaping

4

CODESCAPE
All software has a shape. I call this a codescape.

Some code is easy to follow, some is rugged and complex.

5

CODESCAPE ACCUMULATION
The beautiful beginnings.

Initial concept. Startup/project formed. Prototype. Adoption.
Features added, capabilities changed.

New developers, more contributors, more ideas. More capabilities.
Plugins, microservices, 3rd party APIs.

6

THE EVER EVOLVING ECOSYSTEM AROUND US
Every-day influences shape the codescape.

Faster.Bigger. Better.

New hardware 🎮, new frameworks 🏗, new languages 🐍, new
tools 🗜.

NEW EVERYTHING!

7

NEW EVERYTHING!

EVERYTHING IS AMAZING!

8

BUT WAIT
The promised land of bug-free, performant, easy to modify, unit-

tested code doesn't exist.

9

The unit tests are fragile.
Some integration tests don't run.

There are magics sprinkled in the code and deployment toolchain.

Even cosmic rays cause problems.

10

GRADUAL ACCUMULATION OF CRUFT AND CODE FEATURES

Scope creep, deadlines, break-fix. Community issues,
disagreements.

11

My head hurts.

12

GLACIAL REFACTORING
• Gradual process intended to take time.
• Frequent small changes with minimal scope.
• Safe, easy to roll-back changes.
• Self-documenting next steps.
• Easy to incorporate into any release lifecycle.

13

GLACIAL REFACTORING
THE FIRST REFACTORING PHASE

During this phase, we'll act like glacial detectives, looking for clues in
the structure of our code.

Our goal? To gradually flatten and streamline the code, smoothing
out those rugged 'code mountains' we encounter.

14

IDENTIFYING THE TERRAIN
The first step in glacial refactoring is understanding our terrain.
We'll look for and identify features in our codescape that have

emerged over time.

15

EXAMPLE CODESCAPE FEATURES
• Feature Moraines: Accumulated layers of code, diverse and large,

each layer a testament to our evolving project.
• Code Erratics: Isolated pieces of code, remnants of past needs,

adrift in our current codescape.
• Workaround Eskers: Trails of quick fixes and shortcuts, weaving

through our code, often born from urgent needs.
• Deadline Scars: Marks of rushed development; hasty patches,

unpolished code, the product of tight timelines.
• Data Kettles: Pockets of data, scattered and disconnected,

leftovers from the flow of information over time.
• Code Mountains: Deeply nested and complex code structures,

resembling the rugged terrain carved by glaciers.

16

SOME EXAMPLE CODESCAPE FEATURES

17

EXPLORING FEATURE MORAINES IN CODE
Let's examine a code sample illustrating potential Feature Moraines

— areas where code has accumulated over time.
from db.manager import db_connection, dsdb

class GlacierAnalysisTool:
def __init__(self, db=db_connection): ...
def analyze_ice_thickness(self): ...
def map_glacial_retreat(self): ...

class MoraineDataProcessor(GlacierAnalysisTool):
def aggregate_debris_data(self): ...
def calculate_moraine_age(self): ...
def import_initial_core_analysis(self, path): ...
def legacy_data_cleanup(self): ...
def add_core_analysis(self, core_id, url=CORE_API, provider="USGS"): ...

11 def import_initial_core_analysis(self, path): ...
12 def legacy_data_cleanup(self): ...

Hints of legacy data and and importing initial data.

18

TRACING THE SYSTEM'S ARCHITECTURE
Here, we find hints of our system's architecture, like a separate Data

Science database. This knowledge helps guide our refactoring
strategy.

1 from db.manager import db_connection, dsdb

4 def __init__(self, db=dsdb): ...

13 def add_core_analysis(self, core_id, url=CORE_API, provider="USGS"): ...

19

DOCUMENTING WITH GLACIAL NOTES
As we refactor, it's vital to add 'Glacial Notes' — comments that

document our observations and action items. This helps both our
understanding and that of future developers.

2 # GlacialNote: dsdb appears to be a data science database that we don't have access to.

10 __glacial_note__ = "Flatten: Pull base up, this is the only use of GlacierAnalysisTool."

14 # GlacialNote: Appears to be unused, no refs in current code

20

FLATTENING CODE MOUNTAINS
A 'Code Mountain' is an unusually deeply nested code formation.

One of the most intimidating naturally occuring code formations to
work with. Usually full of Code Moraines and Code Erratics.

21

FLATTENING CODE MOUNTAINS
The distinct shape of a Code Mountain is easy to spot. The left

margin is shaped like the peaks and valleys of a mountain range.
for slide in presentation:

if slide.is_have_content():
for elemento in slide.elements:

if elemento.is_textual():
for parrafo in elemento.parrafos:

if parrafo.is_have_special_format():
if parrafo.is_bold():

 elemento.apply_bold(parrafo)
 elif parrafo.is_italic():
 elemento.apply_italic(parrafo)

else:
if sys.getenv("FF_20090101_OPS-2319"):

 sys.exit("Unsupported format - 不适合")
 continue

else:
 parrafo.normalize_format()

else:
for img in elemento.media:

if img.is_fit(slide):
if media_utils.needs_light_adjustment(img):

 slide.add_img(img, bg=(255,255,255))
else:

 raise NotImplementedError('iफट नह& होता')

22

FLATTENING CODE MOUNTAINS
Here we add a couple Glacial Notes documenting findings before changing code.

12 # GlacialNote: Flag no longer set, JIRA issue closed in 2022
13 # Clue: merge commit for REL-4832 fixed in presentation UI.
14 # Action: Remove
15 if sys.getenv("FF_20090101_OPS-2319"):
16 sys.exit("Unsupported format - 不适合")

21 # GlacialNote: Good spot to flatten or extract to functions

23

COMMIT

24

HAULING AWAY CODE ERRATICS
With our intent committed, we can now make fixes, one at a time.

One example is Code Erratics..

11 else:
12 # GlacialNote: Flag no longer set, JIRA issue closed in 2022
13 # Clue: merge commit for REL-4832 fixed in presentation UI.
14 # Action: Remove
15 if sys.getenv("FF_20090101_OPS-2319"):
16 sys.exit("Unsupported format - 不适合")

25

HAULING AWAY CODE ERRATICS
Add Glacial Notes as needed.

11 continue # GlacialNote: Appears to be unnecessary.

26

HEAVY DUTY EXCAVATION: FLIPPING IF-ELSE
Flipping if-else blocks is a powerful way to evaluate and flatten

code.

6 # GlacialNote: if-else main code path second
7 if parrafo.is_have_special_format():
8 if parrafo.is_bold():
9 elemento.apply_bold(parrafo)
10 elif parrafo.is_italic():
11 elemento.apply_italic(parrafo)
12 continue # GlacialNote: Appears to be unnecessary.
13 else:
14 parrafo.normalize_format()

27

HEAVY DUTY EXCAVATION: FLIPPING IF-ELSE
Here we negate the if and swap the code before and afer else.

The normal main code path is now first.

6 if not parrafo.is_have_special_format():
7 parrafo.normalize_format()
8 else:

28

FLIPPING OFF THE ELSE
Now we can use continue to tell the else to take a hike and peel off

a layer.

8 continue
9 if parrafo.is_bold():
10 elemento.apply_bold(parrafo)
11 elif parrafo.is_italic():
12 elemento.apply_italic(parrafo)
13 continue # GlacialNote: Appears to be unnecessary.

29

EVOLUTIONARY
CODESCAPING

THE GLACIAL RETREAT

30

ENVISIONING THE FUTURE
Evolutionary Codescaping is envisioned as an integral part of

software development life-cycles.

• Using GlacialNotes for continuous improvement
• Integrating refactoring seamlessly into SDLC
• Maintaining a focus on core Glacial Refactoring principles
• Tooling to facilitate understanding code behaviour and usage
• Developing parallel code paths for risk mitigation

31

THE ROAD AHEAD
The journey of Glacial Refactoring is just beginning.

32

ASSISTANCE WELCOME
Join me in shaping this methodology.

• Refining terminology, creating guidelines, and writing examples
• Aligning with existing practices and terminology
• Promoting adoption of a positive perspective on all kinds of past

code.
• Building tooling: helper libraries, reporting tools, SDLC

integrations, linting tools, etc.

33

Thank you for joining me on this exploration of Glacial Refactoring.

Here's ways to reach out to me.

 Email

 Web

 Mastodon

 Github

 LinkedIn

 Discord PyOhio

rose@rosehooper.com

rosehooper.com

@krayola@mastodon.social

github.com/rhooper

linkedin.com/in/rosehooper

https://www.pyohio.org/2023/discord/

34

mailto:rose@rosehooper.com
https://rosehooper.com/
https://mastodon.social/@krayola
https://rosehooper.com/slides/pyohio-2023/index.html?print-pdf
https://www.linkedin.com/in/rosehooper
https://www.pyohio.org/2023/discord/
mailto:rose@rosehooper.com
https://rosehooper.com/
https://mastodon.social/@krayola
https://rosehooper.com/slides/pyohio-2023/index.html?print-pdf
https://www.linkedin.com/in/rosehooper
https://www.pyohio.org/2023/discord/

